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Abstract. In the present paper we consider the case of an electron under the presence of a single mode
field in a cavity linearly polarized in the z-direction. We adopt the dipole approximation and we derive
the full propagator of the electron. In the present case we suppose that the field is in a coherent state.
The parameters of the propagator involve Mathieu functions. Finally we extract the time evolution of an
initially Gaussian wavepacket and its probability density. The present theory is applicable to the interaction
of strong fields with atoms.

PACS. 03.65.Fd Algebraic methods

1 Introduction

The study of cavity effects has been a main area of research
for a long time. It allows the production and use of certain
radiation states and the study of their interaction with
atoms.

In previous work [1,2], we have studied a specific cav-
ity effect. We have considered a hydrogen atom interact-
ing with radiation and we have studied the transitions
induced by the field for initial and final field states such
as vacuum, coherent and squeezed states. In such prob-
lems the standard approach we use is the elimination of
the field variables using the coherent states path integral
formalism [3–11], and then handling the path integral over
the electron’s coordinate with either exact methods or nu-
merical ones (e.g. Monte Carlo), depending on the specific
problem and its geometry [12–15].

In the present paper we study quantum mechani-
cally an electron in a cavity, under the action of a single
mode field polarized in the z-direction. In fact the present
scheme is an alternative form of the standard Jaynes-
Cummings model which has been worked to exhaustion
of its possibilities [16].

The present paper proceeds in the following order. In
Section 2 we give the system Hamiltonian and the propa-
gator integrated over the photonic field in a coherent state
representation. Then we calculate the reduced propagator
exactly supposing initial and final coherent states. Finally
we apply the results of [17] to find the propagator. Math-
ieu function appears on integrating the path integral over
the electron coordinates. In Section 3 we apply the re-
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sults of the previous section to the evolution of a Gaussian
wavepacket. In Section 4 we give our conclusions.

2 System Hamiltonian and propagator
of the electron

We now consider the system Hamiltonian H. It can be
written as a sum of three terms. The free electron Hamil-
tonian He in its center of mass system, the single mode
field one Hf and the interaction term HI

H = He +Hf +HI. (1)

Particularly the Hamiltonian of the electron is given as

He =
p2

2
(2)

and the Hamiltonian of the cavity mode has the form

Hf = ω

(
a+a+

1
2

)
· (3)

In the present paper we suppose that only one mode is
present in the cavity.

Finally, the interaction Hamiltonian in the length form
is given as

HI = −er ·Ef . (4)

The second quantized form of the field operator is given as

Ef(r) =
1√
V

il(ω)ε̂
[
aeik·r − a+e−ik·r] (5)
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where V is the cavity volume and l(ω) is a real function
of frequency given as l(ω) =

√
~ω/2ε0.

In (4) we use the dipole approximation
(
eik·r ≈ 1

)
sup-

posing that the electron wavepacket is not very much
spread in space in relation to the radiation wavelength,
so that the field operator has the form

Ef =
1√
V

il(ω)ε̂
(
a− a+

)
(6)

and HI takes the form

HI = − 1√
V

iel(ω)ε̂ · r(t)
(
a− a+

)
. (7)

Now we combine the terms (3, 7) involving field variables
in the term

H0(a+, a; t) = Hf +HI = ω

(
a+a+

1
2

)
+ g(t)a+ g∗(t)a+

(8)

where

g(t) = − 1√
V

iel(ω)ε̂ · r(t). (9)

The propagator corresponding to (8) has be derived via
path integral methods [18].

In fact on considering the Hamiltonian (1) the full
propagator can be obtained by integrating over both the
space and photonic field variables. At first we integrate
over the field variables, which appear only in H0. There
results a path integral of only the spatial variables. It is
given by the following expression up to an overall phase
coming from the constant in (3)

K(αf , rf ;αi, ri; t) =
∫ r(t)=rf

r(0)=ri

Dr(τ)

×exp

i
∫ t

0

dτ
ṙ2(τ)

2
− i
∫ t

0

dτg(τ)Z(τ) − 1
2

(
|αf |2 + |αi|2

)
+Y (t)α∗f αi + Z(t)α∗f − iαiX(t)

·
(10)

Y (t), X(t) and Z(t) are given as

Y (t) = exp
[
−i
∫ t

0

dτω(τ)
]

= exp(−iωt), (11)

X(t) =
∫ t

0

dτg(τ)Y (τ), (12)

Z(t) = −i
∫ t

0

dτg∗(τ) exp
[
−i
∫ t

τ

dτ ′ω(τ ′)
]
. (13)

The propagator (10) with diagonal photonic field variables
can be written as

K(α, rf ;α, ri; t) =
∫ r(t)=rf

r(0)=ri

Dr(τ)

× exp
[
i
∫ t

0

dτ
ṙ2(τ)

2
+A−B|α|2 +D1α+Dα∗

]
(14)

where after using (9), the parameters are given as

A(t) = − 1
V
e2l2(ω)

∫ t

0

dτ
∫ τ

0

dρε̂ · r(τ)ε̂ · r(ρ)eiω(ρ−τ),

(15)

B(t) = 1− Y (t) = 1− exp(−iωt), (16)

D(t) =
1√
V
el(ω)

∫ t

0

dτ ε̂ · r(τ)eiωτ e−iωt, (17)

D1(t) = − 1√
V
el(ω)

∫ t

0

dτ ε̂ · r(τ)eiωτ . (18)

In this paper we consider that we have a field transition
from a coherent state to a second one. Other kind of pho-
tonic transitions can be treated similarly.

Now we can integrate the propagator (14) over the field
variable α between a final |γ〉 and an initial |β〉 coherent
field state to obtain the following reduced propagator for
the motion of the electron

K̃γ,β(rf , ri; t) = C(t)
∫ r(t)=rf

r(0)=ri

Dr(ρ) exp {iStot [r]} (19)

where

C(t) =
exp

(
βγ∗

B(t)
− 1

2
|β|2 − 1

2
|γ|2
)

B(t)
(20)

Stot [r] =
∫ t

0

{
ṙ2(ρ)

2

− 1√
V
el(ω)


i

exp(iωt)− 1
γ∗eiωρ

+
i

exp(−iωt)− 1
βe−iωρ

 ε̂ · r(ρ)

}
dρ

+
1
V
e2l2(ω)

∫ t

0

dρ
∫ ρ

0

dσε̂ · r(ρ)ε̂ · r(σ)ξ(t, ρ − σ) (21)

and the function ξ(t, ρ− σ) is given as

ξ(t, ρ− σ) = ie−iω(ρ−σ) + i
2

eiωt − 1
cos[ω(ρ− σ)]. (22)

Now we proceed to a certain approximation of the exact
action (21). On performing the change of variables τ =
ρ− σ one has the integral∫ ρ

0

dσε̂ · r(σ)ξ(t, ρ − σ) =
∫ ρ

0

dτξ(t, τ)ε̂ · r(ρ− τ). (23)

Now we perform the Taylor expansion

ε̂ · r(ρ− τ) = ε̂ · r(ρ) − τ ε̂ · ṙ(ρ) + . . . (24)

Then after substitution of the Taylor expansion in the
integral (23) the first term r(ρ) can be taken out of the
integral and the following integral arises

ν(t, ρ) =
∫ ρ

0

ξ(t, ρ− σ)dσ

=
1
ω

[
1 + csc

(
ωt

2

)
sin
(
ωρ− ωt

2

)]
(25)
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and we obtain expression (27) (see below). Higher order
terms in the Taylor expansion are in fact negligible as
they are going to involve powers of S = el(ω)/

√
V and

their contribution in the action is going to be of order S3

and on, as the last term in the action (21) already involve
an S2 contribution. This fact can be shown by taking into
account the equation of motion that can be derived from
the action (21) via standard methods. In fact it reads as

r̈(ρ)− 2
1
V
e2l2(ω)ε̂

∫ ρ

0

dσε̂ · r(σ)ξ(t, ρ − σ)

+
1√
V
el(ω)ε̂

[
i

exp(iωt)− 1
γ∗eiωρ

+
i

exp(−iωt)− 1
βe−iωρ

]
= 0. (26)

Powers of S in fact involve powers of the fine structure
constant as well as the volume and their neglectfulness
to a first order approximation is a standard method of
approach in QED.

Finally the action (21) becomes

Stot [r] =
∫ t

0

{
ṙ2(ρ)

2

− 1√
V
el(ω)


i

exp(iωt)− 1
γ∗eiωρ

+
i

exp(−iωt)− 1
βe−iωρ

 ε̂ · r(ρ)

}
dρ

+
1
V
e2l2(ω)

∫ t

0

dρ (ε̂ · r(ρ))2
ν(t, ρ). (27)

Supposing a linear polarization on the z-direction we have
three uncoupled one-dimensional problems. The propaga-
tor in the z-direction corresponds to a general driven time-
dependent oscillator. On applying the work of Lo [17] it
is given as

Kγ,β
z (zf , zi, t) =

√
i

2πc3c2
exp

{
(zi/c2 + d1 − zf)

2

2ic3

+
ic1
2
z2

i + id2zf + id3

}
· (28a)

Where c1 = c1(t, t) and similarly for the other c and d (for
a definition see below).

In the other directions we have one-dimensional free
particle problems with corresponding propagators

Kx(xf , xi, t) =

√
1

2πit
exp

{
− (xi − xf)

2

2it

}
, (28b)

Ky(yf , yi, t) =

√
1

2πit
exp

{
− (yi − yf)

2

2it

}
· (28c)

The full propagator is the product of the three ones given
above, i.e.

K̃γ,β (rf , ri, t) =

C(t)Kx (xf , xi, t)Ky (yf , yi, t)Kγ,β
z (zf , zi, t) . (29)

Now we proceed to the definition of the parameters given
in (28a).

At first we set

f(t, ρ) = − i√
V
el(ω)

eiωρ

eiωt − 1
, (30a)

W (t, ρ) = −2
1
V
e2l2(ω)ν(t, ρ). (30b)

As proved by Lo [17] if we suppose that F (t, ρ) obeys the
differential equation

d2F (t, ρ)
dρ2

+W (t, ρ)F (t, ρ) = 0 (31)

with the initial condition F ′(t, 0) = 0, then c are given as

c1(t, ρ) =
∂

∂ρ
ln(F (t, ρ)), (32a)

c2(t, ρ) =
∣∣∣∣F (t, ρ)
F (t, 0)

∣∣∣∣ , (32b)

c3(t, ρ) = −F (t, 0)2

∫ ρ

0

du
F (t, u)2

· (32c)

In fact

W (t, ρ) = −4πα
V
− 4πα

V
csc
(
ωt

2

)
cos
(
ωρ− ωt

2
− π

2

)
(30b′)

in dimensionless units.
Then equation (31) has as solutions Mathieu func-

tions [20] and consequently we have the final results

see equations (33a, 33b, 33c) below

c1(t, ρ) =
ω

2

MathieuC Prime(a, q, z) + FF (t)MathieuS Prime(a, q, z)

MathieuC(a, q, z) + FF (t)MathieuS(a, q, z)
(33a)

c2(t, ρ) =

��������
MathieuC(a, q, z) + FF (t)MathieuS(a, q, z)

MathieuC

�
a, q,

ωt

4
+
π

4

�
− FF (t)MathieuS

�
a, q,

ωt

4
+
π

4

�
��������

(33b)

and c3(t, ρ′) = −
Z ρ′

0

�
MathieuC

�
a, q,

ωt

4
+
π

4

�
− FF (t)MathieuS

�
a, q,

ωt

4
+
π

4

��2

(MathieuC(a, q, z) + FF (t)MathieuS(a, q, z))2 dρ (33c)
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where

z =
ωρ

2
− ωt

4
− π

4
(33d)

FF (t) =
MathieuC Prime

(
a, q,

ωt

4
+
π

4

)
MathieuS Prime

(
a, q,

ωt

4
+
π

4

) (33e)

a = − 4πα
ω2V

(33f)

and

q =
2πα
ω2V

csc
(
ωt

2

)
· (33g)

We have used the symbols of Mathematica [20] for the
Mathieu functions which appear above, as in the present
case we have an initial value problem with fixed a and q.

The d parameters are given as

d1(t, ρ) = γ∗d′1(t, ρ) + βd′′1 (t, ρ) (34a)

where

d′1(t, ρ) =
∫ ρ

0

f(t, u)c3(t, u)c2(t, u)du, (34b)

d′′1(t, ρ) = −
∫ ρ

0

f∗(t, u)c3(t, u)c2(t, u)du, (34c)

d2(t, ρ) = γ∗d′2(t, ρ) + βd′′2 (t, ρ), (35a)

where

d′2(t, ρ) =
∫ ρ

0

f(t, u)c2(t, u)du, (35b)

d′′2(t, ρ) = −
∫ ρ

0

f∗(t, u)c2(t, u)du, (35c)

and

d3(t, ρ) = γ∗2d′3(t, ρ) + β2d′′3 (t, ρ) + γ∗βd′′′3 (t, ρ), (36a)

where

d′3(t, ρ) =
∫ ρ

0

f(t, u)c2(t, u)d′1(t, u)du, (36b)

d′′3 (t, ρ) = −
∫ ρ

0

f∗(t, u)c2(t, u)d′′1 (t, u)du, (36c)

d′′′3 (t, ρ) =
∫ ρ

0

(
f(t, u)d′′1(t, u)

− f∗(t, u)d′1(t, u)
)
c2(t, u)du. (36d)

3 Application to wavepacket propagation

Now we consider that the state of our charged particle has
been initially prepared to be in the form of the Gaussian
wavepacket

Φ(z) =
(
2πσ2

)−1/4
exp

[
− 1

4σ2
z2

]
· (37)

Fig. 1. Wavepacket probability density as a function of the z-
coordinate for different times. Solid curve: t = 0. Dashed curve:
t = π/ω. Dotted curve: t = 2π/ω. Dash-dotted curve: t =
3π/ω. The following parameters have been set: ω = 5.0 a.u.,
V = 106 a.u., β = γ = 106, σ = 1.0.

Such a state locates the particle with a width of σ at
position 0.

The evolving wave function in the z-direction is ob-
tained using the propagator (28a) as

Ψ(z, t) =
∫
Kγ,β
z (z, z′, t)Φ(z′)dz′. (38)

Obviously the final wave function depends on γ and β. In
the other directions we suppose free propagation.

On performing the integration we obtain

Ψ(z, t) =
1

(2πσ2)1/4

√
1
c2
− c1c2c3 −

ic2c3
2σ2

× exp


− iσ2 (d1 − z)2

/c22
c3 (ic3 + 2c1c3σ2 − 2σ2/c22)

−2iz2

c3
+

id1z

c3
+ id2z −

2id2
1

c3
+ id3

 . (39)

We have assumed that c1 = c1(t, t) and similarly for the
others c and d.

In Figure 1 we give |Ψ(z, t)|2 as a function of z for
various times. We observe increasing spread and a small
drift of the maximum of the distribution with time.

4 Conclusions

In the present paper we studied a model Hamiltonian that
describes the interaction of radiation with electrons in a
cavity, extracted the corresponding propagator in a closed
form and considered the time evolution of an initially
Gaussian wavepacket prepared in a cavity. As Mathieu
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functions are involved in the propagator, from the point
of view of mathematical functions involved radiative pro-
cesses in a cavity appear as considerably different from
that in free space. Our results depend on the cavity vol-
ume and it is expected that for very large volumes they
should approach free space results.

The present model is simple and tractable and gives
new aspects of radiative processes in cavities. We intend
to apply it in the study of atoms in strong fields.
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